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Abstract

We define a Monge-Kantorovich type problem on the NYC subway
system to better understand commuter behavior and it’s implications
for congestion. NYC subway turnstile entrance and exit data is used to
infer a cost minimizing commuter flow between each station, analogous
to a trading network where entrances are ’production’ and exits are
’consumption’. We introduce and evaluate modifications to the model
specifically for this problem and use optimal transport to estimate
which segments of the system are most heavily used and to evaluate a
selection of proposed transit plans.

Introduction

New York city is home to the world’s largest mass transit rail system; the NYC
subway has 422 stations and hundreds of miles of track. The Metro Transit
Authority (MTA) has made public a variety of real time and static data
feeds regarding the usage of the system, however to the author’s knowledge
none have been used to estimate transit flows using an optimal transport
model. Optimal transport models can provide insights into rider’s choices,
congestion patterns, and enable us to make specific queries on things like line
usage and transfer frequency. In this paper, we describe the typical optimal
transport model applied to trading networks and how to modify it so that it
is applicable to an urban rail system like the NYC subway. Furthermore, we
explore the results of the model applied to real data provided by the MTA,
and discuss implications for commuters and transit planners.
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1 Optimal Transport Networks

1.1 Trading Networks

The canonical setting for optimal transport is a trading network for a single
resource with a set of supply and demand nodes X (cities), and a set of
directed arcs A (roads) between them. The primal and dual problems in
this settings are ones of transport cost minimization (optimizing trading
flow rates over all conduits) and profit maximization (optimizing prices for
goods at each city). An |A| × |X | edge-node matrix ∇ defines the topological
structure of this system. For each x ∈ X and a ∈ A, we have and entry in ∇:

∇ax =


+1, if a is an in-edge of x
−1, if a is an out-edge of x
0, otherwise

(1)

Note that∇ is sparse by definition, containing only two entries per row (1 and
−1 for each edge). The production (if positive) or demand (if negative) of each
city is described by the vector n, with one entry for each city. Additionally
we describe the costs associated with each arc as a vector of edge weights c.
As mentioned, the primal and dual problems can be used to infer flows over
edges Π, by solving

min
Πa≥0, ∀a∈A

Π · c , subject to ∇> ·Π = n (2)

or prices Φ at each city by solving

max
Φ∈RX

Φ ·n , subject to ∇ ·Φ ≤ c (3)

In order for the above optimization problems to be feasible, a few criteria
must be met, each with an intuitive interpretation.

1. Balancedness: Nodes are defined as supply or demand nodes based
on the sign of their entries in n, and we assume that exactly all of the
supply is eventually consumed by the demand nodes, i.e.∑

x∈X
nx = 0

2. Connectedness: The set of supply nodes n+,⊂ n and demand nodes
n− ⊂ n are such that n+ is strongly connected to n−, i.e. there is a path
from every ni ∈ n+ to every nj ∈ n−.
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3. No profitable loop: There are not arbitrage opportunities with nega-
tive cost loops. We can enforce this easily by setting

ca ≥ 0, ∀ca ∈ c

These are the basic components of the optimal transport problem defined on
trading networks. Various modifications must be made to better accommo-
date the commuter transit setting.

1.2 Optimal Commuter Flow in Urban Rail Networks

There are a many inconsistencies between the idealized trading network
model and the reality of urban rail transit. While we enumerate these
inconsistencies in full later, in this section we describe modifications made
to the trading network model mentioned above to better fit a mass transit
rail system. In this section, we focus on the flow determination problem (2).

Net Production and Demand

In the trading network model described in section 1.1 each vertex x ∈ X is
associated with a single net resource contribution nx, meaning each vertex is
either exclusively a supply or a demand node, but never both. Intuitively,
in a trading network this means that all the bread produced at city x will
also be consumed by city x if the demand for bread is greater than or equal
the production. However in our setting this is not the case, as each station
is endowed with both commuter production rates p (entrance counts) and
commuter relief rates r (exit counts). The analog in the prototypical trading
model described in section 1.1 is to take the differences between these two
values for each city and use them to populate the demand vector p− r = n.
As mentioned earlier, this yields each station as a production or demand
node based on the sign of this difference. However, using the net-value
for entrances and exits seems inappropriate since no one enters a subway
station with the intention of exiting that same station without setting foot
on a train. The trading model fails to make use of the extra data provided by
the entrance and exit numbers and must treat busy stations with entrances
and exits that net to zero the same as as station with absolutely no usage. To
address this we introduce additional constraints which make use of both the
entrance and exit rates. We define new matrices ∇+ and ∇− that consist of the
positive and negative components of the edge-node matrix ∇, i.e. separate
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matrices marking in-edges and out-edges.

∇+ax
=

1, if a is an in-edge of x
0, otherwise

(4)

∇−ax =

1, if a is an out-edge of x
0, otherwise

(5)

In the modified model the flow vector Π must also satisfy

∇>− ·Π ≥ p , ∇>+ ·Π ≥ r (6)

and as before, the conservation of mass equation still holds

∇> ·Π = n = p− r (7)

The interpretation here mirrors real life precisely: each commuter who
enters a station can be expected to travel along exactly one of the edges
emanating from that station, thus the sum of the total outward flow from
that station must be greater or equal to that station’s entrances (in general it
will be more due to surplus flow into the station).

Commute Distance

In this system there are other factors at play besides efficiency. In fact, com-
muter transport my not be optimal at all. The commuter is not simply trying
to minimize the cost of their commute and there are likely other factors
at play; such as the pay offered by jobs in a certain neighborhood and the
desirability of certain residential areas. We can say with confidence that
commuters do not commute a single stop, therefore we might be inclined
to place a lower bound on the flow at each arc. This does not change the
behavior of the system much in practice and will often simply result in the
arcs with zero flow being assigned the lower bound. In order to promote bidi-
rectional travel between each station while allowing flexibility in allocation
we can put a lower bound on the bidirectional flow between two stations. To
do this we can use Ξ, an |A| × |U |matrix consisting of zeros and ones, setting
U to be the set of non-directed arcs on our network such that |U | = |A|2 , where
uxy ∈ U if and only if axy , ayx ∈ A, i.e. a is a permutation of u

Ξau =

1, if a is a permutation of u
0, otherwise

(8)
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Transit network of 3 stations with
one express line and one local line
and with no transfer penalty
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Augmented network with transfer
edges

Figure 1: Network augmentation procedure to model transfer times

for a ∈ A and u ∈ U . And require that for some constant C

Ξ> ·Π ≥ C (9)

Subway Lines and Transfers

We must modify the network to reflect that each subway line is not identical
(in terms of service density) and perhaps more importantly, the cost of
transferring lines. To achieve this we create nodes for each line-station pair
which form a clique (S,T ) fully connected by transfer edges T where |S | is
the number of lines serviced at the station. The example in figure 2 has two
lines e and l (express and local).

Transport Costs

We decompose the transport cost cxy associated with each edge into two
components.

cxy = ωx + dxy

Wait time: ωx is the wait time or train arrival frequency for a given station
x. ωx = 0 for all edges except for transfer edges. The wait time incurred
by riders who have just entered the system is neglected for simplicity.

Distance: dxy is the travel time between stations x and y

Ideally, the transfer edges would discourage the system from modeling
unrealistic behavior like instantaneous transfers and switching directions
seamlessly.
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2 Application to Subway Data

2.1 Data Input

The Metro Transit Authority has made available a number of different data
feeds, some updated weekly. The software written for this study combines
data from four different feed types to derive the network structure and usage
data needed for the transport model.

Turnstile Data http://web.mta.info/developers/turnstile.html This
data is updated weekly with new turnstile exit and entry counts. Each
row in the file is a separate turnstile device which must be referenced
against a station by its name. Furthermore, each device registers cumu-
lative counts so counts over time intervals must be subtracted out. We
used this dataset to determine the per-station values nx,rx, and px.

Station Data http://web.mta.info/developers/sbwy_entrance.html This
data set consists of station locations as well as entrance locations, sta-
tion names and the lines that service it. This was used to corroborate
subways lines assigned to each station from the turnstile data.

Stops Data The stops data is located in the GTFS schedule data folder of
http://web.mta.info/developers/. This file is important because it
contains location data and it can be used to link station names to station
ids, which might look something like “A19” and are the only consistent
form of station identification across the MTA subway data (though they
are not included in the Turnstile and Station data mentioned above)

Stop-Times Data This data is what one must analyze to derive the links
between each station. It lists the scheduled arrival and departure times
for each train for each station. Connectivity between the IDs mentioned
above can be determined by looking at successive entries in this file.
We also use the data in this file to determine the dxy average trip time
between stations.

Our initial goal was to generate aggregate supply and demand figures
describing whether subway stations produce commuters or consume them.
The entrance and exit counts aggregated by each station name are natural
choices for this, however we found the exit data to be corrupted in many
stations, likely due to the emergency exit door which are often used in
crowded stations during rush hour. Since it was not clear how to check
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Figure 2: Entrance rate changes over 1 hour intervals throughout an average
day for each station (gray lines), and their average (red line). It appears as
though there are four times throughout the day when data is collected from
the turnstiles.

which stations had a frequently used emergency exist, we instead made use
of the fact that entrance counts are time-stamped and measured roughly
four times per day, depending on the turnstile. Days were partitioned into
two intervals (0, t), (t,24), written in hours, and entries coming from the first
interval were interpreted as true station entries, while the evening entries
were counted as morning exits. This technique assumes that the dominant
majority of subway users are commuters, and to ensure that this was likely
the case we restricted the data-set to weekdays only.

We manually selected t so that the number of entries in either interval
would be roughly the when summed over all stations. The turnstile data,
station data, and stops data are inconsistent in the number of stations, station
names, and station lines and therefore present a record linkage challenge.
We used ad-hoc approximate matching techniques to coalesce the data into
files of vertices and edges. In our experience with this dataset, the most
effective string metric for measuring similarity between station names was
the Jaro-Winkler distance[9][? ]. The Jaro-Winkler scores based on prefix
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similarity as well as the edit distance based components of the Jaro distance.

m = chars(s1)∩ chars(s2) , t = number of transpositions

djaro(s1, s2) =

0, if a is an in-edge of x
1
3 ·

(
m
|s1|

+ m
|s2|

+ m−t
m

)
, otherwise

djarowinkler(s1, s2) = djaro(s1, s2) + p · ` · (1− djaro(s1, s2))

Measuring the distance in meters between known stations to identify those
that should have transfer edges was quite effective when combined with
filtering for line overlap via the Jaccard similarity.

2.2 Meeting the Assumptions

In section 1.1 we defined a few assumptions that must be met for the problem
to be feasible. Balancedness is not immediately satisfied by the real-world
data and determines our choice of the partitioning time t. After selected
t, we must still ensure that morning entrances and evening entrances are
perfectly balanced by randomly inserting artificial entries into the deficient
partition. In addition, the connectedness criterion is not immediately met by
the data, and one must ensure that the appropriate stations are connected
via transfer edges.

2.3 Station Price

The dual problem (3) has a less obvious interpretation when applied to a
transit rail system which we explore in figure 3. We infer optimal prices Φx
associated with each station, what but precisely what these prices should
refer to in this case is unclear, however they have a noticeable similarity to
reported rents.

2.4 Modeling Transit Flow

In this section we will discuss the results of the primal min-cost flow opti-
mization (2) and compare the results from the modifications discussed in
section 1.2. In nearly all the model variant tested, the segment of 4,5 train
going from 86th Street to 59th Street had the highest flow, followed by the
adjacent sections below to 42nd Street and above to 125 St. These are widely
reported to be the most overcrowded subways in New York City, and have
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A heat-map generated from the per-
station prices Φ inferred by the opti-
mization in (3)

A map of rent costs in NYC
provided by curbed magazine

Figure 3: Here we can see that the pricing model works well enough to
identify Lower Manhattan and parts of Brooklyn as valuable areas, however

been the focus of relief efforts in the form of the planned Second Avenue
line. These high-traffic track segments are visible in dark red in Figure 5.
In fact, according to these results, about 13 per-cent of all daily riders pass
through this segment of track every day (nearly 800000 people).

Modified Model

A primary observation that led us to design additional constraints for this
problem was that the original trading model will necessarily use half or less
of the available arcs for transport since each track is two-way. In figure 9,
we can see that the entrance - exit flow equivalency constraint does lead to a
more realistic distribution of flows.

Entrance - exit flow equivalency does lead to some unnatural artifacts,
such as isolated two-station commuter relationships shown below:

One main reason to have pause with our preliminary results is that
the network structure is a work in progress as of writing. Although all
stations are present, and most transfers are available, there are issues that
are unaccounted for. For example, there is not a penalty to prevent heavily
used stations from “sending commuters to themselves”. Eventually we
must include ”reverses” as a type of penalized transfer, if we hope for the
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A pathological type of trading net-
work which sometimes appears
when using constraint (6) The expected behavior

Figure 4: Here we can see that the pricing model works well enough to
identify Lower Manhattan and parts of Brooklyn as valuable areas, however

entrance/exit lower bounds to be of help.

3 Evaluating Transit Proposals

Lastly, we will highlight the utility of optimal transport models by eval-
uating two proposed transit plans. We use the optimal flow framework
to specifically evaluate the effect of these plans on current riders, not new
ones that might be attracted by the new system. Correspondingly, we only
include stations which purport a subway transfer capability, and make no
assumptions about the entrances and exits of passengers on newly planned,
nonexistent stations. As it were, we only modify our model through the
addition of edges, and not nodes. These edges are equipped with scalar costs
determined based on the total trip times advertised in the reports [3][1]:
86 minutes end to end trip time for BQX, and 96 minutes total for Triboro
(implied by their average speed). These time allotments were partitioned
according to rough distance measurements. In tables 1 and 2, we can see
that the Triboro plan performs the best in 3 of four matchups. The units in
table one, can be interpreted as man-minutes and the differential between
BQX and Triboro is equivalent to roughly 3.37 years of wasted New-Yorker
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Figure 5: Commuter flows over the NYC subway system, using an unmodi-
fied min-cost flow solver, rendered in gephi
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Figure 6: The BQX proposal for a
waterfront streetcar. Figure 7: The Triboro proposal

Figure 8: Ordered flow levels: Dot-
ted line is using constraint (6),
and solid line is an unmodified ne-
towrk.

Figure 9: Ordered cost-flow levels:
With the addition of both systems,
our system would become more
efficient overall.

time... per day.
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Table 1: Min Cost Flow, Π · c

Trading Model Our Model (using constraint (6))
Current Subway 94407145.75 108767423.946
BQX 93499050.35 108292983.735
Triboro 91729580.7211 106099950.036

Table 2: Maximum flow level (proxy for congestion) (4,5 86th - 59th st),
max(Π)

Trading Model Our Model (using constraint (6))
Current Subway 726006.117825 786578.750725
BQX 727070.222584 794036.857998
Triboro 726006.117825 723777.285966

4 Conclusion

In this paper we began to explore the possibilities for applying optimal
transport techniques to subway ridership data and discussed avenues for
customization constraints for this setting. We also covered some partic-
ulars about what was necessary to extract said data necessary. Moving
forward, there is room for adding temporal temporal analyses, as the turn-
stile data is updated weekly Please. There is definitely a place for the
swipe data http://web.mta.info/developers/fare.html in a subway us-
age model, because it provides useful per-station demographic data up-
dated on a weekly basis. Follow the progress of this project on https:

//github.com/PorkShoulderHolder/transit.
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